主页 > 续电器电动汽车家用充电器工作原理图?

电动汽车家用充电器工作原理图?

一、电动汽车家用充电器工作原理图?

现在电动车已经进入千家万户了,成了我们日常生活不可或缺的一份子,我们每天骑着它上下班,也每天给它充电,虽然大家都知道充电器的作用,但是对于充电器的工作原理有了解多少呢,今天我们要说的就是充电器的工作原理和图解,希望对大家认识充电器有所帮助。

充电器的分类: 用有、无工频(50赫兹)变压器区分,可分为两大类。货运三轮充电器一般使用带工频变压器的充电机,体积大、重量大,费电,但是可靠,便宜;电动自行车和电摩则使用所谓开关电源式充电器,省电,效率高,但是易坏。

开关电源式充电器的正确操作是:充电时,先插电池,后加市电;充足后,先切断市电,后拔电池插头。如果在充电时先拔电池插头,特别是充电电流大(红灯)时,非常容易损坏充电器。

常用的开关电源式充电器又分半桥式和单激式两大类,单激类又分为正激式和反激式两类。半桥式成本高,性能好,常用于带负脉冲的充电器;单激式成本低,市场占有率高。

工作原理

220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。

电动车充电器原理图

2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。

第一是把高压脉冲降压为低压脉冲。

第二是起到隔离高压的作用,以防触电。

第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极 管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。

R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流

电动车充电器原理图

(200-300 mA)通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。

第二路经R5,C8,C3, 达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电 源。T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。

第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。D9为LM358提供基准电压,经R26,R4分压达到 LM358的第二脚和第5脚。正常充电时,R27上端有0.15-0.18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压。此电压一 路经R18,强迫Q2导通。

电动车充电器原理图

D6(红 灯)点亮,第二路注入LM358的6脚,7脚输出低电压,迫使Q3关断,D10(绿灯)熄灭,充电器进入恒流充电阶段。当电池电压上升到44.2V左右 时,充电器进入恒压充电阶段,输出电压维持在44.2V左右,充电器进入恒压充电阶段,电流逐渐减小。当充电电流减小到200mA—300mA时,R27 上端的电压下降,LM358的3脚电压低于2脚,1脚输出低电压,Q2关断,D6熄灭。同时7脚输出高电压,此电压一路使Q3导通,D10点亮。另一路经 D8,W1到达反馈电路,使电压降低。充电器进入涓流充电阶段。1-2小时后充电结束。

电动车充电时注意的五个方面

1、在电量指示表显示剩余三分之一电量时充电。

2、充电环境要保持干燥整洁,充电器不要用塑料袋或塑料瓶包裹住,因为当充电器无法透气时极易烧毁。

3、尽量不要用快充,如非必要一个月内不要超过两次。

4、充电器放置在固定场所,不要磕碰,即使携带也得充分考虑颠簸引起故障。

5、使用标配的充电器充电。

通过上述了解,大家在平时充电时也更应该按照注意来充电,这样不仅安全可靠,还能够延长电池的寿命,希望对大家认识电动车充电器有所帮助。

二、继电器工作原理图

继电器工作原理图解析

继电器是一种广泛应用于电气系统中的开关设备,用于控制大功率电路的小功率控制电路。继电器的核心组件是一个电磁线圈和一组可控开关。当电磁线圈被通电时,产生的磁场会吸引可控开关的触点,从而打开或关闭电路。继电器有着广泛的用途,无论是工业控制、家用电器还是汽车电路,都少不了继电器的身影。

在了解继电器的工作原理之前,我们先通过继电器工作原理图来了解一下它的组成部分:

继电器可以分为两个部分,一个是电磁线圈,另一个是可控开关。电磁线圈通常由绕组、铁芯组成,而可控开关包括常闭触点、常开触点和公共触点。在工作过程中,电磁线圈产生的磁场会吸引可控开关的触点,通过触点的打开或关闭来控制电路。

继电器的工作原理

继电器的工作原理可以分为两个阶段,即激磁阶段和吸合阶段。

激磁阶段:

当继电器的电磁线圈通电时,线圈中会产生磁场,这个磁场会引起铁芯的磁化。根据右手螺旋定则,当通过绕组的电流方向与铁芯磁化方向一致时,磁场就会增强,这个过程叫做激磁;反之,当通过绕组的电流方向与铁芯磁化方向相反时,磁场就会减弱,这个过程叫做消磁。

在激磁阶段中,当电磁线圈正常通电时,铁芯会磁化为一个强大的磁体,使得可控开关的触点被吸引,并保持触点的连通状态。这样,可控开关的常闭触点打开,常开触点关闭,电路就得以通断控制。

吸合阶段:

在激磁阶段完成后,继电器进入吸合阶段。在吸合阶段中,即使断开继电器的电源,电磁线圈中依然保留着剩余磁场,这个剩余磁场导致铁芯依然保持磁化状态,吸引可控开关的触点。只有当断开电磁线圈的通电后,磁场消失,铁芯恢复非磁化状态,触点才能恢复原来的状态。

继电器的应用领域

继电器因其可靠性和灵活性而在众多电气系统中得到广泛应用。以下是一些常见的继电器应用领域:

  • 工业控制: 继电器在工业自动化控制系统中起着重要作用,例如控制电机的启停、选择和变频控制。
  • 家用电器: 继电器在家用电器中被用于控制电路的开关,例如空调、洗衣机、冰箱等。
  • 汽车电路: 汽车中的继电器用于控制车辆各部件的电路,包括启动电机、车灯、喇叭等。
  • 通信系统: 继电器在通信系统中被用于实现信号的转接、放大和保护。
  • 电力系统: 继电器在电力系统中用于保护电路、实现故障检测和自动切换。

继电器作为一种可靠的电气控制设备,不仅可以实现电路的自动控制,还能够隔离电路,提供电气保护。其广泛的应用领域和灵活的控制方式使其成为电气工程中不可或缺的组成部分。

结语

继电器工作原理的深入理解对于电气系统的设计和维护至关重要。通过掌握继电器工作原理图中各个部分的作用和相互关系,我们能更好地应用继电器来实现对电路的控制和保护。希望本文对您对继电器工作原理图的理解有所帮助。

三、本田继电器工作原理图?

1、燃油泵继电器处于工作状态时,电磁铁进行通电,把衔铁吸下来使D和E接触,工作电路自动闭合。

2、电磁式继电器由铁芯、衔铁等配件组成。只要在线圈两端加上一定电压,线圈中就会流过电流,产生一定的电磁效应,带动衔铁的动触点与静触点吸合。

3、当线圈断电后,电磁的吸力也消失了,衔铁会在弹簧反作用下返回位置,使动触点与原静触点吸合。这样吸合、释放,从而达到在电路中的导通、切断。

4、对于油泵继电器的“常开、常闭”触点,区分可以这样区分:继电器线圈未通电时,处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。

四、间隙继电器工作原理图?

间歇继电器的工作原理:它是当电路中电压达到预定值时而动作的继电器。其结构与电流继电器基本相同,只是电磁铁线圈的匝数很多,而且使用时要与电源并联。它广泛应用于失压(电压为零)和欠压(电压小)保护中。所谓失压和欠压保护就是当由于某种原因电源电压降低过多或暂时停电时,电动机即自动与电源断开;当电源电压恢复时,如不重按起动按钮,则电动机不能自行起动。如果不是采用继电器控制,而是直接用闸刀开关进行手动控制,由于在停电时未及时拉开开关,当电源电压恢复时,电动机即自行起动,可能造成事故。

另外还有过电压继电器,它是当电路电压超过一定值时,因电磁铁吸力而切断电源的继电器,它用于过电压保护(如保护硅管和可控硅元件)。

五、汽车油路工作原理图?

油路工作原理应该先从油箱组成开始,主要分为油箱、油泵总成、滤芯总成等等。

一般有一下几根管路

出油管(这个简单就是油泵泵出油的管子)一般出油管先连着滤芯(有内置在机油泵总成内的)再往前就连着油轨,喷油器了,要是缸内直喷的话油嘴前边还需要一个加压泵)

回油管(这个是通过油轨上一个压力调节阀,阀门一端在汽油管路里另一端连着发动机进气支管用来恒定压力使压力始终保持在电喷系统工作额定的范围内。

碳罐透气管(这个管有一根的也有两根的,因为汽油挥发快,而且燃油慢慢使用后,油箱会造成负压,所以需要电磁阀的开合来控制油箱压力 ,电磁阀另一端连着发动机进气道。

加油口管 这个就是加油的,有个在加油管那还安装了翻车感应器等

工作原理:

汽油从油箱经过油泵吸入 由出油管经过滤芯到喷油器,喷油器喷出油燃烧,然后通过压力调节阀把剩余的燃油经过调压阀回油管,回到油箱内以此循环。有的车采用了电子调压方式没有回油管。比如菲亚特18A4000发动机。

碳罐和电磁阀通过短管直连,并且每一个单独连着管路 在汽油挥发的时候由碳罐进行过过滤 吸收了水分以后 燃油经过管路回到油箱里,多余的水分存在碳罐里,发动机一般超过1500转 碳罐电磁阀打开 ,发动机进气支管吸气使发动机工作的同时慢慢吸走碳罐的里水分。

六、摩托车续电器工作原理

摩托车续电器工作原理解析

摩托车续电器是一个关键的电气装置,它在摩托车电路中起到供电和续电的作用。了解摩托车续电器的工作原理对于我们理解摩托车电路的运行和故障排除都是至关重要的。

什么是摩托车续电器?

摩托车续电器是一种电气开关装置,负责在摩托车点火系统中传递电流。续电器通常由继电器和电阻组成。续电器的主要作用是将点火系统中所需的电压调整到合适的电压,然后传递给火花塞。

摩托车续电器的工作原理

摩托车续电器的工作原理比较简单,它通过一个电磁线圈和一个机械接触器来控制电流的通断。

  • 当摩托车的点火开关打开时,电磁线圈中的电流开始流动。
  • 电磁线圈中流动的电流产生一个磁场,吸引机械接触器。
  • 机械接触器接触,将电流从续电器的输入端引导到输出端,供电给点火系统和其他电器设备。
  • 当摩托车的点火开关关闭时,电磁线圈中的电流停止流动。
  • 没有电流的情况下,机械接触器回弹,断开输入和输出之间的连接,停止供电。

摩托车续电器的工作原理可以简单描述为:通过电磁线圈和机械接触器控制电流的通断,从而实现对摩托车点火系统的供电。

摩托车续电器的作用

摩托车续电器有以下几个重要作用:

  1. 提供点火系统所需的电压:续电器将摩托车电瓶提供的电压调整为点火系统所需的合适电压,确保点火系统正常工作。
  2. 保护点火开关:续电器起到了一个保护点火开关的作用,通过通过续电器控制电流的通断,减轻了点火开关的负担,提高了点火系统的可靠性和耐久性。
  3. 控制其他电器设备:除了点火系统,续电器还可以控制摩托车上其他电器设备的供电,如灯光、喇叭等。

摩托车续电器故障排除

摩托车续电器故障会导致点火系统无法正常工作,甚至无法启动摩托车。以下是可能导致续电器故障的一些常见原因:

  • 电磁线圈损坏:电磁线圈损坏会导致无法产生磁场吸引机械接触器。
  • 机械接触器粘连:长时间使用会导致机械接触器粘连,影响电流的通断。
  • 电阻损坏:电阻是继电器的重要组成部分,损坏会影响电流的流动。
  • 电路连接问题:摩托车续电器的电路连接松动、断开等问题也会导致续电器故障。

如果您发现摩托车点火系统无法正常工作,可能是续电器故障。这时候需要检查续电器及其相关部件,并及时进行维修或更换。

结语

摩托车续电器是摩托车电路中的重要组成部分,它是摩托车点火系统的关键。了解续电器的工作原理和作用对于我们维护摩托车、排除故障都是非常有用的。当我们遇到摩托车点火系统故障时,我们可以通过检查续电器及其相关部件来判断是否存在续电器故障,并采取相应的维修措施。

希望本文能够对读者理解摩托车续电器的工作原理有所帮助!

七、电磁继电器工作原理图

电磁继电器工作原理图详解

在现代工业中,电磁继电器是一种常用的电气控制设备。它具有简单、可靠、灵活的特点,被广泛应用于电力系统、电梯控制、自动化生产等领域。本文将详细解析电磁继电器的工作原理图,让我们一起来了解吧。

电磁继电器的工作原理图主要包括两部分:控制回路和工作回路。在控制回路中,电磁继电器通过控制元件(如按钮开关、传感器等)接通或断开电源,从而控制继电器工作;而在工作回路中,继电器的触点根据控制回路的信号状态,切换电源电路,从而实现对其他电气设备的控制。

1. 控制回路

电磁继电器的控制回路通常由控制电源、控制元件和继电器线圈组成。控制电源提供电流给控制元件,控制元件可以是按钮开关、传感器等。当控制元件闭合时,电流流经线圈,激励线圈产生磁场,磁场作用于继电器中的铁芯,吸合触点。

以控制回路开关为例,当按钮开关闭合时,电流流经线圈,线圈激磁产生的磁场使得线圈中的铁芯受到吸引力,向磁场的方向移动,最终触点闭合。触点的闭合/断开状态取决于控制回路中的信号状态,可以实现对其他设备的控制。

2. 工作回路

电磁继电器的工作回路主要由触点和电源组成。触点是继电器中一个重要的部件,可以分为常开触点(即在继电器未工作时常开的触点)和常闭触点(即在继电器未工作时常闭的触点)。

工作回路中,通过控制回路的信号状态来控制触点的闭合和断开,从而实现电流的通断切换。当控制回路中的信号使得触点闭合时,工作回路中的电源可以通电,当触点断开时,工作回路中的电源断电。这样,电磁继电器的工作回路可以实现对其他设备的电气控制。

3. 电磁继电器工作原理图示例

下面我们通过一个电磁继电器工作原理图示例来具体了解继电器的工作原理。如下图所示:

在这个示例中,我们可以看到控制回路中的按钮开关和工作回路中的电路图。当按钮开关闭合时,控制回路中产生电流,激磁线圈产生磁场,吸合触点闭合,电源通电,灯泡亮起。当按钮开关断开时,控制回路断电,线圈不再激磁,触点断开,电源断电,灯泡熄灭。通过控制回路和工作回路的相互作用,实现对灯泡的开关控制。

4. 电磁继电器的应用

电磁继电器作为一种常见的电气控制设备,被广泛应用于工业自动化、电力系统、交通信号灯及电梯控制等领域。

在工业自动化中,电磁继电器可以实现对电机、电磁阀等设备的远程控制,从而实现生产流程的自动化。在电力系统中,电磁继电器可以实现电力的分配和保护,保证电力系统的安全稳定运行。在交通信号灯中,电磁继电器可以实现信号的切换和控制,确保交通流畅。

总之,电磁继电器的工作原理图详解为我们揭示了电磁继电器的工作原理和应用。通过控制回路和工作回路的相互作用,电磁继电器可以实现对其他设备的电气控制,使得电路的开关控制更加灵活可靠。电磁继电器的广泛应用在现代工业中具有重要意义,为自动化生产、电力系统和交通控制等领域的发展做出了重要贡献。

八、固态继电器工作原理图

固态继电器工作原理图

固态继电器是一种智能电器设备,广泛应用于自动化控制系统中。它具有可靠性高、寿命长、体积小、耐冲击、响应快等优点,成为传统继电器的理想替代品。本文将介绍固态继电器的工作原理图以及其在电路中的应用。

1. 工作原理

固态继电器由固态开关和触发电路组成。固态开关采用半导体材料,通过控制外部触发信号的输入来实现开关电路的闭合和断开。触发电路负责对固态开关进行控制,以保证正确的工作状态。

具体地,固态继电器的工作原理类似于传统电磁继电器。当输入正常触发信号时,触发电路会对固态开关施加足够的电压,使其导通。导通后,固态开关会在其主回路上形成低电阻状态,电流得以顺利通过。

与传统继电器不同的是,固态开关是通过激活与其并联的弱触发信号来实现导通的。弱触发信号可以是电流、电压、光照等,具体取决于固态继电器的设计。由于使用弱触发信号,固态继电器的功耗较低。

2. 工作原理图

下面是一张固态继电器的典型工作原理图:

<img src="relay_circuit.png" alt="固态继电器工作原理图">

从上述原理图可以看出,固态继电器的电路结构相对简单。正常情况下,输入端的信号与触发电路相连接,通过控制电路对固态开关进行驱动。固态开关导通后,负载电路得到供电,实现相应的控制功能。

3. 应用场景

固态继电器由于其优越的性能和可靠性,在工业自动化、家电控制等领域广泛应用。以下是一些固态继电器常见的应用场景:

  • 温度控制:固态继电器可以根据温度传感器的信号来控制加热设备,如电炉、热水器等。
  • 照明控制:固态继电器可用于照明控制系统,通过控制信号来实现灯光的开关、调光等功能。
  • 电动机控制:固态继电器广泛应用于电动机的启停控制、转速调节等场景,具有精确、稳定的特点。
  • 电力系统:固态继电器可用于电网监控与保护系统,进行电力传输、变压器控制等方面的工作。

当然,固态继电器还有许多其他应用领域,如自动化生产线、能源管理系统等。

4. 优缺点

固态继电器作为一种新型电器元件,相比传统继电器具有多项优势:

  • 可靠性高:固态继电器采用半导体器件,没有机械接触,免去了触点氧化、烧蚀等问题,具有更高的稳定性。
  • 寿命长:固态继电器的寿命可达数十万次开关频率,远远超过传统继电器。
  • 体积小:固态继电器体积较小,适用于空间有限的场所,可以实现集成化设计。
  • 耐冲击:固态继电器内部没有机械结构,能够承受较大的冲击和振动,适用于恶劣的工作环境。
  • 响应快:固态继电器的开关速度较快,响应时间较短,能够满足高精度控制的要求。

然而,固态继电器也存在一些缺点,如价格较高、对电压和温度等环境条件要求较严格等。在具体应用时,需要根据实际场景进行综合评估和选择。

5. 总结

固态继电器作为现代电气控制领域的重要组成部分,通过半导体技术的应用,实现了电路控制的革新和优化。其工作原理简单,应用广泛,具有多项优势。未来,随着科技的不断演进,固态继电器将在更多领域发挥重要作用,为工业自动化和智能化控制注入强大的动力。

九、四爪继电器工作原理图?

4脚继电器,其中两个脚有阻值,这两个脚内部是线圈。其余两个脚是常开触点,接负载,简单的说就是个开关。原理是当线圈通电时,线圈就会产生磁力,常开脚就会闭合,接通负载

十、汽车柴暖工作原理图?

汽车柴暖的工作原理是:主电机带动柱塞油泵、助燃风扇及雾化器转动。油泵将吸入的燃油送到雾化器,雾化后与助燃风扇吸入的空气燃烧混合,之后被电热塞点燃,在后燃烧室内充分燃烧后折返,经水套内壁及上面的散热片,将热量传递给冷却液。

热门文章