一、声控灯电路图原理分析?
原理分析如下:220V交流电通过灯泡H及整流全桥后,变成直流脉动电压,作为正向偏压,加在可控硅VS及R支路上。
白天,亮度大于一定程度时,光敏二极管D呈现低阻状态≤1KΩ,使三极管V截止,其发射极无电流输出,单向可控硅VS因无触发电流而阻断。此时流过灯泡H的电流≤2.2mA,灯泡H不能发光。电阻R1和稳压二极管DW使三极管V偏压不超过6.8V,对三极管起保护作用。
夜晚,亮度小于一定程度时,光敏二极管D呈现高阻状态≥100KΩ,使三极管V正向导通,发射极约有0.8V的电压,使可控硅VS触发导通,灯泡H发光。
二、简易呼吸灯电路图原理分析?
双运放中,右侧运放及其外围电路构成“滞回比较器(双门限比较器,也称磁滞比较器、迟滞比较器或斯密特触发器)”,左侧运放及其外围电路构成“积分电路”,滞回比较器与积分器首尾环接。
比较器输出(也是积分器的输入)为高(或低)电平时,积分器输出(也是比较器的输入)电压直线下降(或上升),共同构成方波-三角波发生电路;由于运放是单电源工作,采用R7和R8分压得Vcc/2,分别为比较器和积分器提供比较基准电压和工作偏置电压;三极管9013构成共集电极放大电路(也称射极输出器、射极跟随器,简称射随),作LED驱动(即电流放大),三角波电压使LED工作于亮暗渐变的状态;R4和R6为限流电阻。三、ATX(电脑)电源电路图原理分析?
到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。
按管脚的顺序把内部四个比较器设为A、B 、C 、D 比较器。494和339再配合其他电路,共同完成ATX电源的稳压,产生PW-OK信号及各种保护功能。
四、ATX(电脑)电源电路图原理分析?
到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。
选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。按管脚的顺序把内部四个比较器设为A、B 、C 、D 比较器。494和339再配合其他电路,共同完成ATX电源的稳压,产生PW-OK信号及各种保护功能。具体分析: 一、 产生PW-OK信号 PC主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了PW-OK信号(约+5V),主机在获得此信号后才开始工作。接通电源时,要求PW-OK信号比±5V、±12V、+3.3V电源延迟数百毫秒才产生,关机时PW-OK信号应比直流电源先消失数百毫秒,以便主机先停止工作,硬盘的磁头回复到着陆区,以保护硬盘。关机时,主机内开关使PS-ON呈高电平,此时339的{6}脚电平高于{7}脚,{1}脚输出低电平,因二极管D34的钳位作用,{14}脚呈低电平,C39对C比较器及B比较器放电,很快{11}脚呈低电平,{13}脚输出低电平,即PW-OK信号呈低电平。在339的{1}脚为低电平时,经D36使{4}臆脚为低电平,{2}脚输出高电平,经R41传送到494的{4}脚,但因C35电位不能突变,经数百毫秒的放电后方使494的{4}脚转为高电平,从而封锁正负脉冲的输出 ,主机进入待机状态。上述的过程中,关机时C39和C35都要放电,但因放电时间常数不同,C39放电较快,故PW-OK信号先于各电源变成低电平,满足了主机关机的需要。此外,关机时因各路输出电源的电解电容放电需要时间,也使PW-OK信号先于各电源回到低电平。二、 稳压 494的{2}脚经R47与基准电压+5V相连,维持较好的稳定电压,而{1}脚则与取样电阻R15、R16与+5V、+12V相连接,正常的情况下,{1}脚电平与{2}脚电平相等或略高。当输出电压升高时(无论+5V或+12V),{1}脚电平高于{2}脚电平,c比较器输出误差电压与锯齿波振荡脉冲在PWM比较器b进行比较使输出脉冲宽度变窄,输出电压回落到标准值,反之则促使振荡脉冲宽度增加,输出电压回升。由于494内的放大器增益很高,故稳压精度很好。从稳压的原理,我们可以得到ATX电源输出电压偏高或偏低的维修方法。如果输出电压偏低,可在494的{1}脚对地并联电阻,或是把R47的电阻增大。要是电源的输出偏高,则可在{2}脚对地并联电阻,也可以用增大R33或取下R69、R35来降低输出电压。三、 过流保护 过流保护的原理是基于负载愈大,Q3、Q4集电极的脉冲电压也愈高,也即是R13(1.5kΩ)上的电压也愈高,从这里采样经D14整流和C36滤波,再经R54、R55并联电阻与R51、R56、R58等组成的分压电路送到494的{16}脚。随着负载的加重,{16}脚的电平也随之上升,当超过{15}脚的电平时,误差放大器输出的误差电压促使调制脉冲的宽度变窄从而使负载电流减小。另外,从R56、R58并联电阻获得的分压再经R52送到339的{5}脚,当{5}脚的电平超过{4}脚时,{2}脚即输出高电平送到494的{4}脚,494停止输出脉冲信号,终止±5V、±12V、+3.3V电源的输出,达到过流及短路保护的目的。需要说明的是:494的{16}脚电平的高低只能改变输出脉冲的宽度,但不影响494的{4}脚电平状态,而339的{5}脚电平一旦超过{4}脚的电平,339的{2}脚就送出高电平去封锁449的脉冲输出,终止±5V、±12V、+3.3V电源的输出,同时{2}脚的高电平经R59和二极管D39反馈到{5}脚,维持{5}脚处于高电平状态,此时若过载或短路状态消失,494的{4}脚仍维持高电平,±5V与±12V、+3.3V电源仍不能输出,只有切断交流市电的输入,再重新接通交流电,方可再次开机。四、过压保护 过电压保护由R17和稳压管Z02并联电路从+5V采样,经D37送到339的{5}脚。若+5V电源由于某种原因升高,339的{5}脚电平也会随之升高,当超过{4}脚电平时,{2}脚即送出高电平去494的{4}脚,封锁±5V、±12V、+3.3V电源的输出,达到过电压保护的目的。正常工作时,R17上的压降不大,Z02截止送到{5}脚的电压较低,若+5V电源的电压上升,使R17上的压降超过Z02的稳压值,Z02导通,+5V电源上升后的电压值全部加到339的{5}脚上,促使其快速封锁494脉冲的输出,以保护电源。五、欠压保护 欠压保护从-5V的D32及-12V处的R14取样,经R34和D37送到339的{5}脚。若因某种原因使输出电压过低时,-12V及 -5V电压的负值也会随之减小,也就是电压值上升,经R34及D37送往339的{5}脚使电平上升,339的{2}脚送出高电平到494的{4}脚,从而封锁 449脉冲的输出,实现欠压保护。二极管D32在导通时,其电压降与通过的电流基本无关,保持在0.6V~0.7V,于是-5V电压的减少量会全部传送到D32的负端,提高了欠压保护的灵敏度。五、点火系电路图分析?
帮我分析一下工作过程
六、如何根据电路板画电路图?
1.连接电路板功能。
2.阅读电路板上重要集成芯片的芯片资料,以求了解芯片功能,以及在本电路中的功能。
3.将电路分模块,也确保电路板上的每一个元件都分到一个模块中。比如电路中可能会有电源模块,主控模块,信号采集模块,显示模块等等。并使用万用表测量电路中不容易划分到模块中的元件。
4.按照划分好的电路模块,开始绘制各个模块的电路图。
5.绘制电路图要确保没有元件被拉下。绘制完成后检查电路图,以确保电路图正确。
6.分析电路功能,以确保电路的正确性。如果在最后的分析中,发现某个功能与芯片资料上给出的典型电路不同,可能就是你绘制错误,需要检查下。希望可以帮上你哦!!!
七、电路板电路图入门讲解?
这是很难讲清的,只能说点原则和主要注意的。先学习看电路图(电器的原理),熟练了再看电路板(电器元件的布设)。
看电路图先熟习电路图符号代表的器件,清楚这些器件的基本功能和电气参数。把电路图划分成不同功能的区块,再把区块间关系合成一体。
一般是从电源部分入手看,顺电流、电压方向找出整个电路的输入、输出端,中间就是这个电路功能的构成部分。
电路板,是具体元件的安装位置,只有熟习了电路图(工作原理)才能知道该元件的所在位置的前后线路连接走向(比如它周围应当和什么元件有电气相关连接),元件分布与电路图不一致。
八、灯泡电路图原理?
电流通过灯丝(钨丝,熔点达3000多摄氏度)时产生热量,螺旋状的灯丝不断将热量聚集,使得灯丝的温度达2000摄氏度以上,灯丝在处于白炽状态时,就象烧红了的铁能发光一样而发出光来。灯丝的温度越高,发出的光就越亮。故称之为白炽灯。
九、变送器工作原理电路图
变送器工作原理电路图
介绍
变送器是一种重要的电子设备,常用于工业自动化控制系统中。它的主要功能是将感应到的物理量(如温度、压力、液位等)转换为电信号,以便传输给接收设备进行处理。变送器的工作原理和电路图是了解和应用这一设备的关键。
工作原理
变送器主要由传感器和电路板组成。传感器负责感应物理量,并将其转换为电信号。电路板负责增强、过滤和调节电信号,使其达到适合传输和处理的要求。
传统的变送器工作原理基于电阻的变化。以温度变送器为例,通常使用热敏电阻作为传感器。当温度发生变化时,热敏电阻的电阻值也会相应改变。电路板通过将电阻值转换为电压或电流信号,实现温度的测量和传输。
现代的变送器工作原理多采用数字化技术。传感器将物理量转换为模拟信号,然后通过模数转换器将模拟信号转换为数字信号。电路板通过数学运算和数据处理,将数字信号转换为最终的输出信号。
电路图
变送器电路图的设计考虑了多个因素,如传感器类型、应用场景、信号要求等。下面是一个基本的变送器电路图示例:
- 传感器:选择适合的传感器类型,如热敏电阻、压力传感器、液位传感器等。
- 信号调理电路:包括放大器、滤波器、调节器等,用于增强信号、去除干扰和调节信号范围。
- 模数转换器(ADC):将模拟信号转换为数字信号,以便后续的数字信号处理。
- 数字信号处理器(DSP):对数字信号进行数学运算和数据处理,得到最终的输出信号。
- 输出接口:将输出信号传输给接收设备,如显示器、控制器等。
需要注意的是,不同类型的变送器电路图可能会有所不同。有些变送器可能只包含基本的传感器和信号调理电路,而有些变送器可能还包括更复杂的数字信号处理器和通信接口。
应用
变送器广泛应用于工业控制系统中,为工程师和操作人员提供准确的物理量测量和监控。以下是一些常见的变送器应用领域:
- 温度变送器:用于测量和控制工业过程中的温度,如炉温、液体温度等。
- 压力变送器:用于测量和控制工业过程中的压力,如气体压力、液体压力等。
- 液位变送器:用于测量和控制液体的高度或容量,如污水处理、储罐液位等。
- 流量变送器:用于测量和控制流体的流量,如水流量、气流量等。
总之,变送器是工业自动化领域中不可或缺的设备,通过转换物理量为电信号,实现了准确、可靠的测量和控制。掌握变送器的工作原理和电路图,对于工程师和技术人员来说是非常重要的。
感谢阅读本篇文章,希望对您了解变送器的工作原理和电路图有所帮助。
十、电路板电路图必背口诀?
电路板电路图的必背口诀:电压表先不管,电源、总开关,总电流表串联做主干。
用电器、分开关、分电流表串联作支线,一器一支线,首首相连、尾尾相连,接主干,电压表与谁并联随你便,实物、电路都一样,记住口诀是关键。
基本电路串并联,分清特点是关键;串联就是一条路,正极出发负极回;一灯烧毁全路断,一个开关管全局;开关位置无影响,局部短路特殊用。并联电路像河流,分了干路分支流,干路开关全控制,支路电器独立行。串联等流电压分,并联分流电压等,串联灯亮电阻大,并联灯亮小电阻。